Diagnosing and managing canine dystocia (Proceedings) - Veterinary Healthcare
  • SEARCH:

ADVERTISEMENT

Diagnosing and managing canine dystocia (Proceedings)


CVC IN KANSAS CITY PROCEEDINGS


Medical management should be considered if there is no evidence of obstruction, and fetal and pelvic size appear normal. Oxytocin is a peptide hormone that increases the frequency and strength of uterine contractions by promoting influx of calcium into myometrial cells. Oxytocin also promotes post partum uterine involution, aids in control of uterine hemorrhage, and assists in expulsion of retained placentas. The dose for oxytocin has traditionally been reported at 5-20 units IM in the dog and 2-4 units IM in the cat. However, with an increase in the use of uterine contraction monitoring (Whelpwise, Veterinary Perinatal Specialties Inc, Wheat Ridge, CO) in veterinary patients, there is a growing body of evidence to suggest that traditional doses may be too high, potentially causing uterine tetany, ineffective contractions, and decreased fetal blood flow. Recent data suggests that doses of 0.5-2 units are effective in increasing the frequency and quality of contraction. The oxytocin dose may be repeated in 30 minutes if expulsion of a fetus has not resulted. If labor proceeds and a fetus is delivered, oxytocin may be repeated every 30 minutes as needed to assist in expulsion of the remaining fetuses.

Calcium gluconate may be considered if weak, infrequent contractions are noted or when labwork reveals hypocalcemia. Retrospective studies have indicated that many patients who fail to respond to oxytocin alone may respond to a combination of calcium and oxytocin. The dose for calcium gluconate (10% solution) as a uterotonic agent is 11 mg/kg diluted in saline and given subcutaneously, or added to IV fluids and given slowly while monitoring an ECG for arrhythmias. If hypocalcemia is documented, a dose of 50-150 mg/kg intravenously should be used. Subcutaneous administration has been reported to result in irritation and potential granuloma formation, though this is an infrequent complication. Dextrose infusion should also be initiated if hypoglycemia is evident on labwork.

Surgical management should be considered for the following conditions:

  • Complete primary uterine inertia
  • Partial primary uterine inertia or secondary uterine inertia where large numbers of fetuses remain and response to drugs is unsatisfactory,
  • Fetal oversize
  • Gross abnormalities of maternal pelvis (fractures, masses)
  • Fetal malformations
  • Malpresentation that is not amenable to manipulation
  • Past history of dystocia or c-section
  • Fetal putrefaction
  • Maternal evidence of systemic illness
  • Suspicion of uterine torsion, rupture, prolapse, or herniation
  • Evidence of fetal distress with poor response to medical intervention

An anesthetic protocol for caesarian section should be selected with the goal of maximizing survival of neonates and dam. Attempts should be made to minimize exposure of the fetus to anesthetics by keeping the time from induction to delivery as short as possible. Ideally, the dam should be clipped and prepped prior to induction, equipment should be out, and the surgeon should be scrubbed and ready. Induction agents should be given to effect. Regional techniques such as line blocks and epidurals may help to minimize the need for other drugs. A line block can be performed using 2 mg/kg lidocaine infused along the ventral midline. Alternately, epidural lidocaine may be administered in dogs at a dose of 2-3 mg/kg, not to exceed a total volume of 6 ml. Propofol (4-6 mg/kg IV) or mask inductions are most commonly used for caesarian section at this time, and have been associated with reduced neonatal mortality in dogs. Anesthetic agents that have been associated with increased neonatal mortality include thiopental, ketamine, xylazine, medetomidine, and methoxyflurane.


ADVERTISEMENT

Source: CVC IN KANSAS CITY PROCEEDINGS,
Click here