Feline oral squamous cell carcinoma: An overview - Veterinary Medicine
Medicine Center
DVM Veterinary Medicine Featuring Information from:


Feline oral squamous cell carcinoma: An overview
These fast-growing, painful tumors are not uncommon in cats, and few affected patients survive long-term. But a patient's chances can improve if you identify and address the disease early.


Laboratory tests to identify concurrent disease

Figure 6. An intraoral radiograph of a cat with left rostral mandibular squamous cell carcinoma. Note the severe osteolysis; missing teeth; free-floating, displaced teeth; and periosteal reaction in the affected mandible.
A complete blood count, a serum chemistry profile, urinalysis, and feline leukemia virus and feline immunodeficiency virus testing are recommended to detect concurrent or paraneoplastic disease. While an infrequent finding in cats with oral squamous cell carcinoma, hypercalcemia has been reported in cats with this tumor.4,11,12 In a recent study of 71 cats with hypercalcemia, seven had oral squamous cell carcinoma, and six of the seven showed radiographic evidence of bone lysis.12 Hypercalcemia in these cases is thought to be a direct result of the bone lysis by the local tumor.4,11,12

Imaging to determine the extent of invasion

Figure 7. An intraoral radiograph of a cat with a maxillary squamous cell carcinoma. Note the marked osteolysis distal to the maxillary left canine tooth extending around the maxillary left fourth premolar.
Obtaining intraoral radiographs is critical because many structures overlap within and outside the oral cavity on standard skull radiographs. Dental radiographs can reveal invasion of underlying bone with sclerotic, periosteal proliferation and displacement of associated teeth (Figures 6 & 7). Marked osteolysis may also be identified because of tumor invasion and is seen in up to 70% of affected cats.13 Severe osteolysis may result in secondary pathologic mandibular fractures.13 In one study, radiographs demonstrated that osteolysis affected a much greater area than was suspected based only on physical examination in 46% (24 of 52) of cats. This crucial information led to changes in the treatment plans for these patients.5

Computed tomography is a more sensitive way to define the extent of the tumor before surgery or radiation therapy. Ultrasonography may also be used to help delineate the soft tissue margins of lingual squamous cell carcinoma.14

Fine-needle aspiration to assess the primary lesion and regional lymph nodes

The primary lesion may be aspirated to provide a rapid preliminary assessment via cytologic examination. If sedation is required to obtain the aspirate, be prepared to also do an incisional biopsy (see below).

While rare, the most common sites of metastasis for oral squamous cell carcinoma in cats are the mandibular or retropharyngeal lymph nodes. Regional lymph nodes, whether enlarged or not, need to be assessed via fine-needle aspiration and cytologic examination. Physical examination alone is a poor indicator of lymph node metastasis. In a study of seven cats and 37 dogs with a variety of solid tumors, six out of 27 (22%) animals in which lymph nodes were normal-sized or only slightly enlarged had metastatic disease identified via cytology.15 The sensitivity of cytologic evaluation of fine-needle aspirates was 100% (no false negative results), and the specificity was 96% (13 of 14 that had cytologic evidence of metastasis to regional lymph nodes also had histologic evidence), signifying that fine-needle aspiration is a consistent method of assessing the regional lymph nodes.15

Just as normal-sized nodes may contain tumor cells, enlarged nodes may not. In a study of seven cats treated with mandibulectomy and ipsilateral lymph node excision, two nodes noted to be large and firm on physical examination were histologically free of tumor cells, while one nonpalpable node had metastasis.4 In another study of 52 cats with oral squamous cell carcinoma, 15 (29%) cats had enlarged regional lymph nodes, but only seven (13%) of the cats had evidence of squamous cell carcinoma in the node on cytologic examination of a fine-needle aspirate.5 These findings provide further support that physical examination alone is insufficient to determine lymph node status in these patients and that all locoregional lymph nodes need to be microscopically assessed for metastasis.

Biopsy for definitive diagnosis

Table 2 TNM Clinical Staging System for Oral Tumors
Histologic examination of an incisional biopsy sample is required to definitively diagnose feline oral squamous cell carcinoma. It is important to obtain a large sample since feline oral squamous cell carcinomas are frequently infected, necrotic, or inflamed. Large samples that include healthy tissue at the edge and also include deeper areas of the lesion will increase the diagnostic yield. Feline oral squamous cell carcinoma should never be biopsied through the skin but rather through an intraoral incision. An intraoral biopsy prevents seeding of the tumor into the surrounding normal external tissues; these tissues are required for local reconstruction after oral tumor excision and, thus, need to be preserved without tumor contamination.2

Squamous cell carcinoma is usually a straightforward histologic diagnosis. The typical histologic characteristics of squamous cell carcinoma include irregular cords of pleomorphic epithelial cells with abundant eosinophilic cytoplasm, prominent intercellular bridges, and keratin pearls.1


Clinical tumor stage can be assessed by using the World Health Organization's TNM (tumor, nodes, metastasis) system (Table 2). The diameter of the primary tumor at its greatest dimension is classified as T1, T2, or T3. Bone invasion (determined radiographically) is described as either a (absent) or b (present). Regional lymph node involvement is categorized as N0, N1, N2, and N3. Distant metastasis is described as either M0 (absent) or M1 (present).5


Click here